

Honeywell | Industrial & Commercial Thermal

Drosselklappen DKR Drosselklappen mit Stellantrieb IDR

Technische Information · D 3 Edition 08 151

- Für Luft, Warmluft und Rauchgas
- Geringe Leckraten und Druckverluste
- Großer Nennweitenbereich DN 15 500
- Einfache Montage durch Zwischenbauweise zum Einklemmen zwischen Normflansche
- Vormontierte Kombination aus Stellantrieb, Anbaugarnitur und Drosselklappe
- Für Taktbetrieb geeignet
- Wartungsarmer Betrieb
- Lange Lebensdauer durch robuste Bauweise

Inhaltsverzeichnis

Drosselklappen DKR1	Drosselklappe	19
Drosselklappen mit Stellantrieb IDR1	5.7.1 Auswahltabelle IDR	
Inhaltsverzeichnis	5.7.2 Typenschlüssel IDR	
1 Anwendung3	5.8 Axiale Anbaugarnitur	
1.1 DKRF	5.8.2 Lieferumfang	
1.2 DKRH	5.9 Anbaugarnitur mit Gestänge für DKRD	21
1.3 IDR: DKR mit Stellantrieb IC 505	5.9.1 Baumaße	21
1.4 Anwendungsbeispiele	5.9.2 Lieferumfang	
1.4.1 Modulierende Regelung über Drei-Punkt-Schritt-	5.10 Anbaugarnitur mit Gestänge und Stoßdämp	
Ansteuerung	für DKRA 5.10.1 Baumaße	
1.4.2 Stufige Regelung über Zwei-Punkt-Schritt- Ansteuerung7	5.10.2 Lieferumfang	
1.4.3 Modulierende Regelung mit stetigem	6 Projektierungshinweise	25
Eingangssignal8	6.1 Einbauen	
1.4.4 Warmluftkompensation	6.1.1 Einbaulage	
2 Zertifizierung	6.2 Strömungsgeschwindigkeiten in Rohren	
3 Funktion10	6.3 Laufzeit des Stellantriebs	27
4 Volumenstrom	7 Zubehör	28
4.1 Durchflusskurven für DKR 15 – 80	7.1 Wärmeableitblech	28
4.2 Durchflusskurven für DKR 100 – 500	8 Technische Daten	29
4.3 k _V -Werte	8.1 Baumaße	
5 Auswahl14	8.1.1 DKRH in mm	
5.1 Auswahltabelle DKR	8.1.2 DKRH in inch	
5.2 Typenschlüssel DKR	8.1.4 DKRF in inch	
5.3 Nennweite interaktiv berechnen	9 Einheiten umrechnen	
5.4 Auslegung der Nennweite	10 Wartungszyklen	
5.4.1 Beispiel	11 Glossar	
5.5 Auslegung der Nennweite bei vorgewärmter Luft17 5.5.1 Beispiel	Rückmeldung	
5.6 Berechnungsformeln	Ruckinetaung	30

5.7 IDR: Stellantrieb, Anbaugarnitur und

Anwendung

Rollenofen in der Keramikindustrie

Schmiedeofen

1 Anwendung

Die Drosselklappe DKR dient zur Mengeneinstellung von Warmluft und Rauchgas an Luftverbrauchseinrichtungen und Abgasleitungen. Sie wird für Regelverhältnisse bis 1:10 eingesetzt.

1.1 DKR..F

Die Drosselklappe DKR..F ist mit angebautem Stellantrieb IC 50 zur Volumenstromregelung bei modulierend oder stufig geregelten Brennprozessen einsetzbar.

Drosselklappe DKR..F mit freiem Wellenende

1.2 DKR..H

Bei der Drosselklappe DKR..H können mittels Handhebel Volumenströme fest eingestellt und fixiert werden, z.B. zur Begrenzung der Volllast am Brenner. Eine Skala zeigt den eingestellten Öffnungswinkel an.

Drosselklappe DKR..H mit Handhebel

 $DKR \cdot Edition 08.15l$ 4

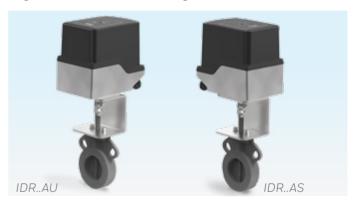
1.3 IDR: DKR mit Stellantrieb IC 50

Vormontierte Verbindungen aus Stellantrieb IC 50, Anbaugarnitur und Drosselklappe DKR sind als IDR bis Nennweite 300 lieferbar.

IDR ist für Anwendungen mit großen Drehmomenten bis 30 Nm ausgelegt. Die Drehrichtung des Klappenblattes lässt sich umschalten. Die Position des Klappenblattes ist von außen ablesbar, wobei die Drehrichtung farblich gekennzeichnet ist.

Entsprechend der Anwendung kann der Stellantrieb über verschiedene Anbaugarnituren zur Drosselklappe ausgerichtet werden.

Siehe www.docuthek.com, Technische Information IC 20, IC 50.

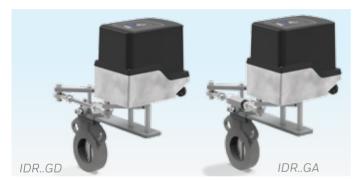

Axialer Anbau

Der Stellantrieb ist axial zur Drosselklappe DKR ausgerichtet.

Die Einbaulage für den Stellantrieb ist wählbar:

IDR...AU: Die elektrischen Anschlüsse des Stellantriebes liegen über der Rohrleitung.

IDR...AS: Die elektrischen Anschlüsse des Stellantriebes liegen seitlich zur Rohrleitung.

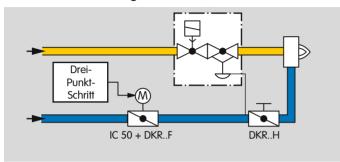

Anwendung

Anbau mit Gestänge

Wenn der Stellantrieb seitlich versetzt zur Drosselklappe arbeiten soll, kann eine Anbaugarnitur mit Gestänge eingesetzt werden.

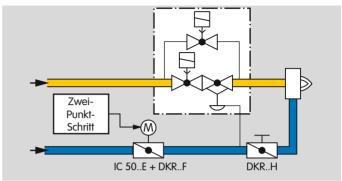
Die Anbaugarnitur GD wird für durchschlagende Drosselklappen DKR..D eingesetzt.

Für Drosselklappen mit Anschlagleiste DKR..A empfehlen wir die Anbaugarnitur mit Stoßdämpfer GA.



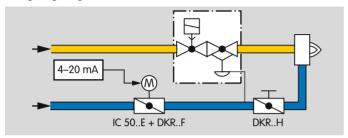
Ab einer Medientemperatur > 250 °C (482 °F) sollte der Stellantrieb mit einem Wärmeableitblech geschützt werden, siehe Seite 28 (Zubehör).

1.4 Anwendungsbeispiele


1.4.1 Modulierende Regelung über Drei-Punkt-Schritt-Ansteuerung

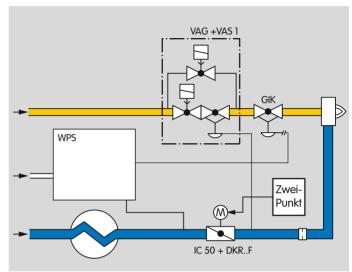
Für Prozesse, die eine hohe Temperaturgenauigkeit bei geringer Umwälzung im Ofen benötigen. Der Stellantrieb IC wird über einen Drei-Punkt-Schritt-Regler angesteuert und fährt die Drosselklappe in die Zündstellung. Der Brenner startet. Entsprechend der Leistungsanforderung an den Brenner fährt die Klappe im Bereich zwischen der Klein-/Großlaststellung auf oder zu. Ohne Drei-Punkt-Schritt-Signal bleibt die Klappe in ihrer momentanen Position stehen.

Die Drosselklappe DKR..H mit Handverstellung dient zur Einstellung der Großlast.


1.4.2 Stufige Regelung über Zwei-Punkt-Schritt-Ansteuerung

Für Prozesse, die eine homogene Temperaturverteilung im Ofen benötigen. Der Stellantrieb IC..E wird über einen Zwei-Punkt-Schritt-Regler angesteuert und arbeitet im Taktbetrieb Ein/Aus oder Groß/Klein. Sobald die Spannung weggenommen wird, fährt der Stellantrieb zu.

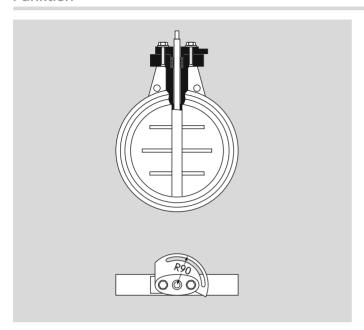
Die Drosselklappe DKR..H mit Handverstellung dient zur Einstellung der Großlast.


1.4.3 Modulierende Regelung mit stetigem Eingangssignal

Für Prozesse, die eine hohe Temperaturgenauigkeit bei geringer Umwälzung im Ofen benötigen. Der Stellantrieb IC..E wird über ein (0) $4-20\,\text{mA}$ - oder $0-10\,\text{V}$ -Signal angesteuert. Das stetige Signal entspricht dem anzufahrenden Stellwinkel und bietet die Möglichkeit, die augenblickliche Position des Stellantriebes zu kontrollieren.

Die Drosselklappe DKR..H mit Handverstellung dient zur Einstellung der Großlast.

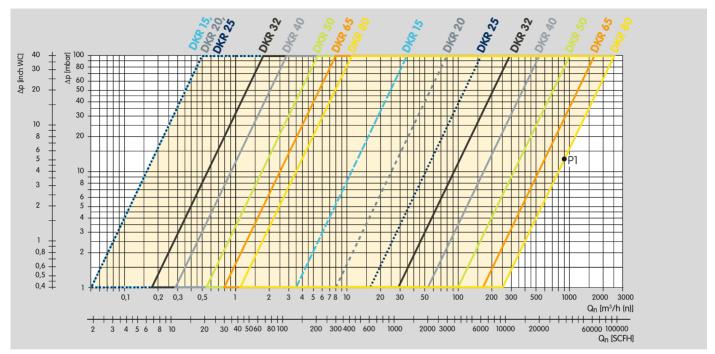
1.4.4 Warmluftkompensation


An Brennern, die mit vorgewärmter Verbrennungsluft bis 650 °C (1202 °F) betrieben werden, wird die Drosselklappe DKR eingesetzt.

2 Zertifizierung

Eurasische Zollunion

Das Produkt DKR entspricht den technischen Vorgaben der eurasischen Zollunion (Russische Föderation, Weißrussland, Kasachstan).

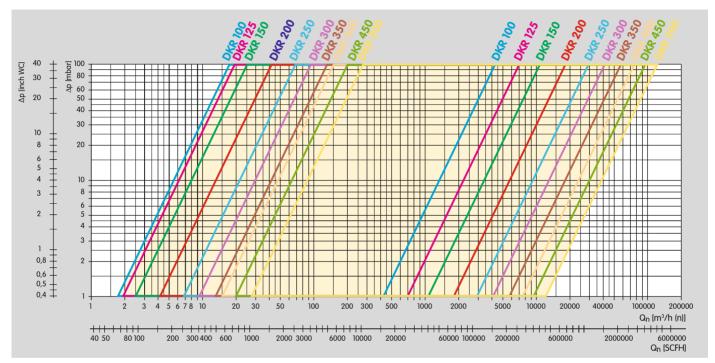

3 Funktion

Die Drosselklappe ist nach dem Freiflussprinzip (keine Umlenkung des Volumenstroms) konstruiert. Sie gibt einen Querschnitt, je nach Drehbewegung zwischen 0 und 90°, für das fließende Medium frei.

Die Drosselklappe DKR..D hat ein durchschlagendes Klappenblatt. DKR..A verfügt über eine mechanische Anschlagleiste.

4 Volumenstrom

4.1 Durchflusskurven für DKR 15 - 80



Gemessen werden die Kennlinien in einem Messaufbau nach Norm EN 13611/EN 161 bei 15 °C (59 °F).

Hierbei wird der Druck $5 \times DN$ vor und nach dem Prüfling gemessen. Der so mitgemessene Druckabfall der Rohrleitung wird nicht herausgerechnet.

Linke Kennlinie: Leckvolumen bei 0°-Öffnungswinkel. Rechte Kennlinie: Max. Volumenstrom bei 90°-Öffnungswinkel.

4.2 Durchflusskurven für DKR 100 - 500

Gemessen werden die Kennlinien in einem Messaufbau nach Norm EN 13611/EN 161 bei 15 $^{\circ}$ C (59 $^{\circ}$ F).

Hierbei wird der Druck $5 \times DN$ vor und nach dem Prüfling gemessen. Der so mitgemessene Druckabfall der Rohrleitung wird nicht herausgerechnet.

Linke Kennlinie: Leckvolumen bei 0°-Öffnungswinkel. Rechte Kennlinie: Max. Volumenstrom bei 90°-Öffnungswinkel.

4.3 k_V-Werte

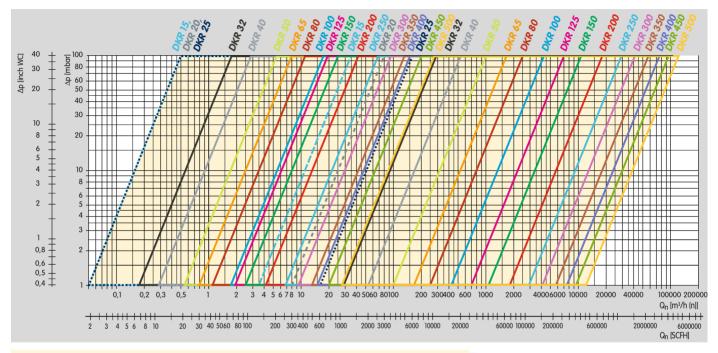
	Öffnungswinkel				
	0°	90°			
DKR 15	0,11	4,0			
DKR 20	0,11	9,2			
DKR 25	0,11	12,6			
DKR 32	0,18	32			
DKR 40	0,32	62			
DKR 50	0,63	115			
DKR 65	0,92	195			
DKR 80	1,3	287			
DKR 100	2	494			
DKR 125	2,3	804			
DKR 150	2,8	1260			
DKR 200	5	2060			
DKR 250	8	3450			
DKR 300	11	4820			
DKR 350	15	6420			
DKR 400	20	8600			
DKR 450	24	10800			
DKR 500	31	13700			

5 Auswahl

5.1 Auswahltabelle DKR

● = Standard, ○ = lieferbar

Beispiel


DKR 250Z03FD650

5.2 Typenschlüssel DKR

Code	Beschreibung
DKR	Drosselklappe für Luft und Rauchgas
15-500	Nennweite
Z	Einbau zwischen zwei DIN-Flansche
03	p _{u max.} 300 mbar (4,35 psi)
H F	mit Handverstellung mit freiem Wellenende
100 350 450 650	max. Mediumtemperatur: 100 °C (212 °F) 350 °C (662 °F) 450 °C (842 °F) 650 °C (1202 °F)
D A	durchschlagend mit Anschlagleiste

5.3 Nennweite interaktiv berechnen

Dichte Produkt Δp a v

Volumenstr. Q (Norm)

Ausgangsdruck p_d

Δp_{max.}

Mediumtemperatur

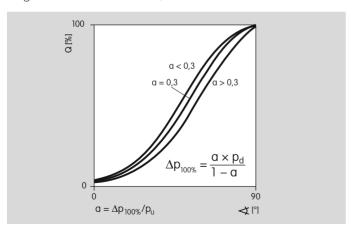
Volumenstr. Q (Betr.)

5.4 Auslegung der Nennweite

Auslegung einer Drosselklappe mit Hilfe der Regelcharakteristik a für den Regelbetrieb, siehe Seite 35 (Glossar).

Eine Ventilautorität von a = 0,3 ergibt gute Regeleigenschaften.

Im Volumenstromdiagramm mit dem gewünschten Volumenstrom Q und dem errechneten Δp die passende Nennweite auswählen.


5.4.1 Beispiel

Gesucht wird die Nennweite der Drosselklappe DKR für Luft zur modulierenden Regelung eines Gasbrenners:

Ausgangsdruck: $p_d = 30 \text{ mbar} (12,1 \text{ "WC})$

Volumenstrom Luft: $Q = 900 \text{ m}^3/h(n) (33598 \text{ SCFH}(n))$

Regelcharakteristik: a = 0.3

$$\Delta p_{100\%} = \frac{0.3 \times 30 \text{ mbar}}{1 - 0.3} = 12.9 \text{ mbar} = 13 \text{ mbar}$$

Die Strömungsgeschwindigkeit in Rohrleitungen hat einen großen Einfluss auf den Druckverlust und die Geräuschentwicklung. Es wird empfohlen, bei der Auslegung der Drosselklappe die Strömungsgeschwindigkeit von 30 m/s (5905 ft/min) nicht zu überschreiten. Für einen Volumenstrom Q = 900 m 3 /h_(n) ergibt sich eine Rohrleitung von DN 100, siehe Seite 26 (Strömungsgeschwindigkeiten in Rohren).

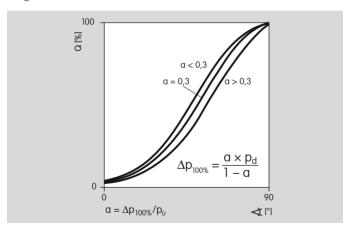
Um den über die Ventilautorität errechneten Druckverlust

 Δp = 13 mbar (5,23 "WC) zu erhalten, wird im Volumenstromdiagramm die Klappe DKR 80 ausgewählt, siehe **P1**, Seite 17 (DKR 15 – 80).

Bei Einbau von Rohrformstücken (Reduzierstücken) in die Rohrleitung müssen die zusätzlich entstehenden Druckverluste berücksichtigt werden.

5.5 Auslegung der Nennweite bei vorgewärmter Luft

Gesucht wird die Nennweite der Drosselklappe DKR zur modulierenden Regelung eines Gasbrenners mit vorgewärmter Luft. Nach dem Berechnen des erforderlichen Druckverlustes wird die Drosselklappe mit Hilfe des $\rm k_{\rm V}{}^{-}$ Wertes ausgelegt.


5.5.1 Beispiel

Ausgangsdruck: $p_d = 60 \text{ mbar} (24,1 \text{ "WC})$

Volumenstrom Luft: $Q = 1200 \text{ m}^3/\text{h} (44797 \text{ SCFH})$

Lufttemperatur: 500 °C (932 °F)

Regelcharakteristik: a = 0,3

Der benötigte Druckverlust beträgt

$$\Delta p_{100\%} = \frac{0.3 \times 60 \text{ mbar}}{1 - 0.3} = 26 \text{ mbar}$$

Der erforderliche k_V-Wert beträgt

$$k_{V} = \frac{Q_{(n)}}{514} \cdot \sqrt{\frac{p_{(n)} \cdot T}{(\Delta p_{Gr} \cdot p_{d Gr})}}$$

$$k_{V} = \frac{1200}{514} \cdot \sqrt{\frac{1,29 \cdot (500 + 273)}{0,026 \cdot (1,013 + 0,06)}}$$

$$k_{v} = 441$$

In der k_V -Werte-Tabelle, siehe Seite 13 (kV-Werte) die DKR mit dem nächstgrößeren k_V -Wert auswählen. In diesem Fall die DKR 100 mit einem k_V -Wert von 494 m³/h (18442 SCFH) auswählen.

Mit der Drosselklappe DKR 100 ergibt sich ein tatsächlicher Druckverlust von

$$\Delta p = \frac{p_{(n)} \times T}{p_d} \times \left(\frac{Q}{k_V \times 514}\right)^2$$

$$\Delta p = \frac{129 \times (500 + 273)}{(1.013 + 0.06)} \times \left(\frac{1200}{494 \times 514}\right)^2$$

$$\Delta p = 21 \, \text{mbar}$$

5.6 Berechnungsformeln

k_V-Wert

$$k_V = \frac{Q_{(n)}}{514} \cdot \sqrt{\frac{p_{(n)} \cdot T}{(\Delta p \cdot p_d)}}$$

Volumenstrom

$$Q_{(n)} = k_v \cdot 514 \cdot \sqrt{\frac{(\Delta p \cdot p_d)}{\rho_{(n)} \cdot T}}$$

Druckverlust

$$\Delta p = \frac{\rho_{(n)} \times T}{p_d} \times \left(\frac{Q}{k_V \times J^2}\right)^2$$

Ventilautorität

$$a = \frac{\Delta p_{100\%}}{p_U}$$

Legeno	le	
Q _(n)	[m ³ /h]	Volumendurchfluss Norm
ρ(n)	[kg/m ³]	Dichte des Gases bei Normzustand
Δр	[bar]	Druckverlust über das Stellglied
pd	[bar]	Absoluter Druck hinter dem Stellglied
pu	[bar]	Eingangsdruck
T	[K]	Absolute Temperatur des Mediums
а	_	Regelcharakteristik

5.7 IDR: Stellantrieb, Anbaugarnitur und Drosselklappe

Verbindungen aus Stellantrieb IC 50, Anbaugarnitur und Drosselklappe DKR sind als IDR bis DN 300 konfigurierbar. IDR wird vormontiert geliefert.

5.7.1 Auswahltabelle IDR

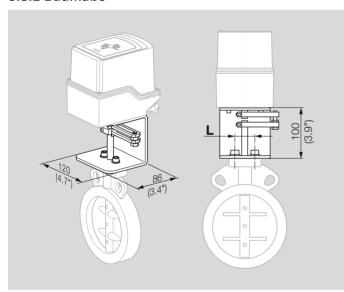
 \bullet = Standard, \bigcirc = lieferbar

Beispiel

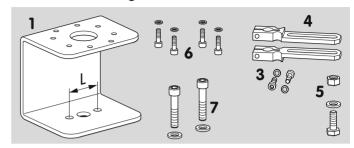
IDR..Z03A350AU/50-30W20TR10

5.7.2 Typenschlüssel IDR

	poncontaccorizit
Code	Beschreibung
IDR	Drosselklappe für Warmluft und Rauchgas mit Stellantrieb
15 – 300	Nennweite
Z	Einbau zwischen zwei DIN-Flansche
03	p _{u max.} 300 mbar (4,35 psi)
D A	durchschlagend mit Anschlagleiste
100 350 450 650	Temperaturbereich: 100°C (212°F) 350°C (662°F) 450°C (842°F) 650°C (1202°F)
	Anbaugarnitur für axialen Anbau:
AU	elektr. Anschluss IC 50 über der Rohrleitung
AS	elektr. Anschluss IC 50 seitlich zur Rohrleitung
	Anbaugarnitur mit Gestänge:
GD	für DKRD
GDW	und Wärmeableitblech für DKRD
	Anbaugarnitur mit Gestänge und Stoßdämpfer:
GA	für DKRA
GAW	und Wärmeableitblech für DKRA


Code	Beschreibung
/50	Baureihe 50, mit erhöhtem Drehmoment
-03 -07 -15 -30 -60	Laufzeit [s]/Stellwinkel [°]: 3,7/90 7,5/90 15/90 30/90 60/90
W Q H	Netzspannung: 230 V~, 50/60 Hz 120 V~, 50/60 Hz 24 V~, 50/60 Hz
3 7 15 20 30	Drehmoment: 3 Nm 7 Nm 15 Nm 20 Nm 30 Nm
E T	stetige Ansteuerung Drei-Punkt-Schritt-Ansteuerung
R10	Rückmeldepotenziometer

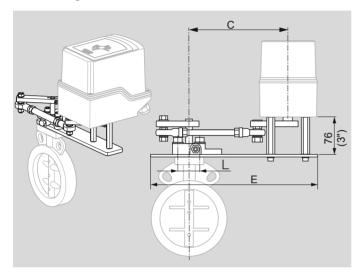
5.8 Axiale Anbaugarnitur


Anbaugarnitur zur axialen Verbindung von Drosselklappe DKR..D und Stellantrieb IC 50. Der Stellantrieb kann versetzt in 90°-Schritten an die Anbaugarnitur montiert werden

Separat als Beipack ist die Anbaugarnitur bis Nennweite 500 lieferbar.

5.8.1 Baumaße

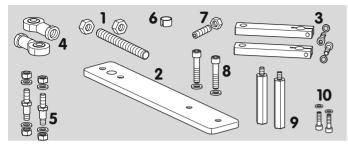
5.8.2 Lieferumfang



- 1 1 x U-Winkel
- 22 x Hebel
- 3 2 x Schrauben und Scheiben für die Hebel
- 4 1 x Schraube, Scheibe und Mutter
- **5** 4 x Schrauben und Scheiben für Stellantrieb
- 6 2 x Schrauben und Scheiben für Drosselklappe

Nennweite	L		Gewicht		BestNr. Anbaugarnitur als
DKR	mm	inch	kg	lbs	Beipack
DN 15 – 20	36	1,4	1,3	2,9	74924940
DN 25 – 32	36	1,4	1,3	2,9	74924941
DN 40 – 50	40	1,6	1,3	2,9	74924942
DN 65 - 125	40	1,6	1,3	2,9	74924943
DN 150 - 250	60	2,4	1,3	2,9	74924944
DN 300	60	2,4	1,3	2,9	74924945
DN 350	90	3,5	1,4	3,1	74924946
DN 400 – 500	90	3,5	1,4	3,1	74924947

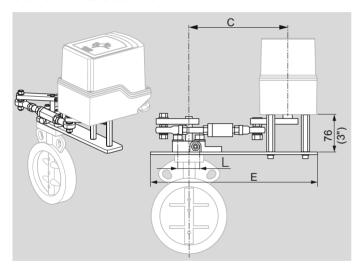
5.9 Anbaugarnitur mit Gestänge für DKR..D


Anbaugarnitur zur Verbindung von Drosselklappe DKR..D und Stellantrieb IC 50. Separat als Beipack ist die Anbaugarnitur bis Nennweite 500 lieferbar.

5.9.1 Baumaße

N : D/D		_		Ε	(Gew	richt
Nennweite DKR	mm	inch	mm	inch	mm	inch	kg	lbs
DN 25 – 32	36	1,4	285	11,2	194	7,6	1,3	2,9
DN 40 – 50	40	1,6	285	11,2	194	7,6	1,3	2,9
DN 65 - 100	40	1,6	285	11,2	194	7,6	1,3	2,9
DN 125	40	1,6	330	13,0	239	9,4	1,5	3,3
DN 150 - 250	60	2,4	340	13,4	239	9,4	1,5	3,3
DN 300	60	2,4	395	15,6	294	11,6	1,7	3,7
DN 350	90	3,5	435	17,1	319	12,5	1,9	4,2
DN 400 – 500	90	3,5	495	19,5	380	15	2,1	4,6

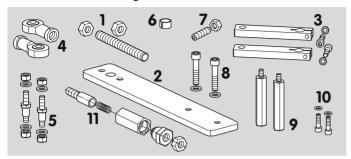
5.9.2 Lieferumfang



- **1** 1 x Gewindestange, 2 x Muttern
- 2 1 x Flacheisenkonsole
- 3 2 x Hebel, 2 x Schrauben, 2 x Scheiben
- 4 2 x Gelenkköpfe
- **5** 2 x Stehbolzen, 4 x Scheiben, 4 x Muttern
- 6 Hülse für Wellenende (nur für DN 15 50)
- **7** Gewindestift mit Mutter (Drosselklappe)
- **8** 2 x Schrauben, 2 x Scheiben (Befestigung Drossel-klappe)
- 9 2 x Distanzbolzen für Stellantrieb
- **10** 2 x Schrauben, 2 x Scheiben (Befestigung Stellantrieb)

Nennweite DKR	BestNr. Anbaugarnitur
DN 15 - 20	74924948
DN 25 - 32	74924949
DN 40 – 50	74924950
DN 65 - 100	74924951
DN 125	74924952
DN 150 - 250	74924953
DN 300	74924954
DN 350	74924955
DN 400 – 500	74924956

5.10 Anbaugarnitur mit Gestänge und Stoßdämpfer für DKR..A


Anbaugarnitur zur Verbindung von Drosselklappe DKR..A und Stellantrieb IC 50. Bei der Drosselklappe mit Anschlagleiste wird ein Gestänge mit Stoßdämpfer empfohlen. Separat als Beipack ist die Anbaugarnitur bis Nennweite 500 lieferbar.

5.10.1 Baumaße

Nennweite DKR		L E		Ξ	С		Gewicht	
Neilliweite DKR	mm	inch	mm	inch	mm	inch	kg	lbs
DN 25 - 32	36	1,4	285	11,2	194	7,6	1,5	3,3
DN 40 - 50	40	1,6	285	11,2	194	7,6	1,5	3,3
DN 65 - 100	40	1,6	285	11,2	194	7,6	1,5	3,3
DN 125	40	1,6	330	13,0	239	9,4	1,6	3,5
DN 150 - 250	60	2,4	340	13,4	239	9,4	1,7	3,7
DN 300	60	2,4	395	15,6	294	11,6	1,9	4,2
DN 350	90	3,5	435	17,1	319	12,5	2,1	4,6
DN 400 - 500	90	3,5	495	19,5	380	15	2,3	5,1

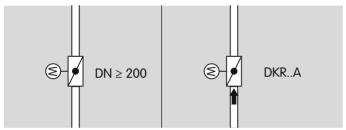
5.10.2 Lieferumfang

Nennweite DKR	BestNr. Anbaugarnitur als Beipack
DN 25 – 32	74924958
DN 40 – 50	74924959
DN 65 - 100	74924960
DN 125	74924961
DN 150 - 250	74924962
DN 300	74924963
DN 350	74924964
DN 400 – 500	74924965

- 1 1 x Gewindestange, 2 x Muttern
- 2 1 x Flacheisenkonsole
- 3 2 x Hebel, 2 x Schrauben, 2 x Scheiben
- 4 2 x Gelenkköpfe
- 5 2 x Stehbolzen, 4 x Scheiben, 4 x Muttern
- 6 Hülse für Wellenende (nur für DN 15 50)
- **7** Gewindestift mit Mutter (Drosselklappe)
- **8** 2 x Schrauben, 2 x Scheiben (Befestigung Drosselklappe)
- **9** 2 x Distanzbolzen für Stellantrieb
- **10** 2 x Schrauben, 2 x Scheiben (Befestigung Stellantrieb)
- 11 Stoßdämpfer

6 Projektierungshinweise

6.1 Einbauen

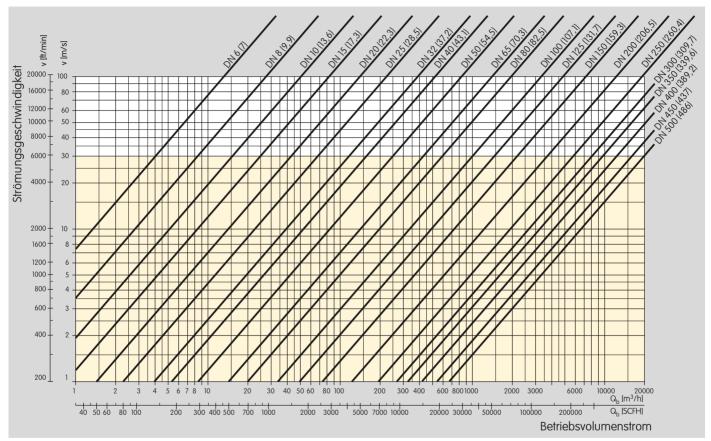

Die Drosselklappe wird in Zwischenbauweise zwischen zwei Flansche nach EN 1092, PN 16 eingebaut.

Empfohlen wird eine Ein- und Auslaufstrecke von 5 x

Für die Auslegung der Rohrleitung wird empfohlen, eine Strömungsgeschwindigkeit von 30 m/s (5905 ft/min) nicht zu überschreiten, siehe Seite 26 (Strömungsgeschwindigkeiten in Rohren).

6.1.1 Einbaulage

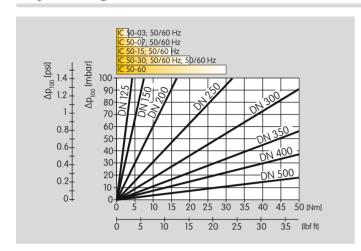
Die Einbaulage ist beliebig.



Für Drosselklappen DKR mit einer Nennweite DN ≥ 200 empfehlen wir, den Antrieb in eine senkrechte Rohrleitung einzubauen. Bei Drosselklappen mit Anschlagleisten (DKR..A) empfehlen wir, den Einbau in eine senkrechte Rohrleitung mit Durchflussrichtung von unten nach oben zu wählen, um das Verschmutzen der Klappenleiste zu verhindern und somit das richtige Schließen der Klappe zu gewährleisten.

Beim Einsatz von Warmluft wird empfohlen, die Rohrleitung ausreichend zu isolieren, um die Umgebungstemperatur zu reduzieren. Die Flansche und die Drosselklappe DKR müssen frei von Isoliermaterial bleiben. Die Drosselklappe so einbauen, dass der Antrieb nicht von ansteigender Warmluft umströmt wird.

Bei einer Mediumtemperatur > $250\,^{\circ}\text{C}$ (482 °F) Wärmeableitbleche einsetzen, siehe Seite 28 (Wärmeableitblech).


6.2 Strömungsgeschwindigkeiten in Rohren

Es wird empfohlen, bei Thermoprozessanlagen die Strömungsgeschwindigkeit von 30 m/s (5905 ft/min) nicht zu überschreiten.

Die Angaben der Innendurchmesser entsprechen den gebräuchlichsten, in der Norm EN 10220 festgelegten

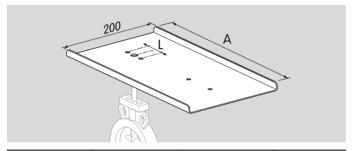
Abmessungen für Gasrohre. Bei anderen Querschnitten ergeben sich entsprechend abweichende Strömungsgeschwindigkeiten.

6.3 Laufzeit des Stellantriebs

Die Drosselklappe DKR wird über den Stellantrieb IC 50 angetrieben. Die Laufzeit des Stellantriebes pro 90° ist abhängig vom benötigten Drehmoment.

Die Kennlinien beziehen sich auf das vom Volumenstrom erzeugte maximale Drehmoment. In der Regel wird das maximale Drehmoment bei ca. 70° erreicht.

Beispiel:


Für eine Drosselklappe DKR 125 oder DKR 150 könnte jede Laufzeit eingesetzt werden.

Bei einer Frequenz von 60 Hz am Stellantrieb verringert sich die Laufzeit um den Faktor 0.83.

7 Zubehör

7.1 Wärmeableitblech

Bei Betrieb mit Warmluft ≥ 250 °C (482 °F) zum Schutz des Stellantriebs IC 50 empfohlen. Die Umgebungstemperatur am Stellantrieb darf 60 °C nicht überschreiten.

DN	L		l l	4	BestNr.	
DIN	mm	inch	mm	inch	DestIVI.	
DKR 15 – 20	36	1,4	366	14,4	74924966	
DKR 25 – 32	36	1,4	366	14,4	74924967	
DKR 40 – 50	40	1,6	366	14,4	74924968	
DKR 65 – 100	40	1,6	366	14,4	74924969	
DKR 125	40	1,6	459	18,1	74924970	
DKR 150 - 250	60	2,4	459	18,1	74924971	
DKR 300	60	2,4	566	22,3	74924972	
DKR 350	90	3,5	619	24,4	74924973	
DKR 400 – 500	90	3,5	758	29,9	74924974	

8 Technische Daten

Gasart: Luft, Rauchgas.

Eingangsdruck p_u: max. 300 mbar (4,35 psi).

Mediumtemperatur:

DKR..100: -20 bis +100 °C (-4 bis +212 °F),

DKR..350:-20 bis +350 °C (-4 bis +662 °F),

DKR..450: -20 bis +450 °C (-4 bis +842 °F),

DKR..650: -20 bis +650 °C (-4 bis +1202 °F).

Umgebungstemperatur: -20 bis +60 °C (-4 bis +140 °F).

Dichtungen: asbestfrei.

DKR..150/350/450:

Gehäusewerkstoff: GG,

Klappenscheibe: bis DN 100: Stahl,

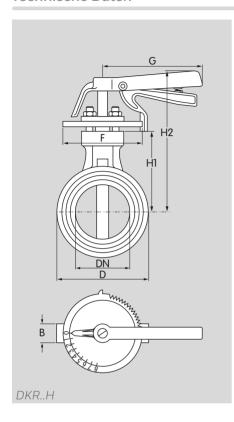
Klappenscheibe: ab DN 125: GG,

Antriebswelle bis max. 350 °C: Stahl,

Antriebswelle bis max. 450 °C: Edelstahl,

Packung: Graphit.

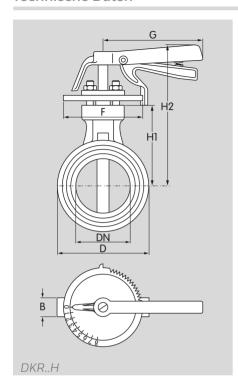
DKR..650:


Gehäusewerkstoff: hitzebeständiger Guss,

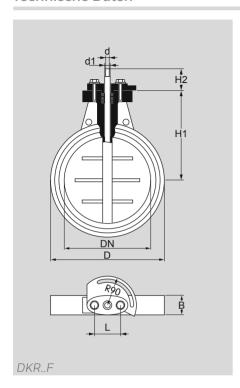
Klappenscheibe: bis DN 65: Edelstahl,

Klappenscheibe: ab DN 80: hitzebeständiger Guss,

Antriebswelle: Edelstahl,

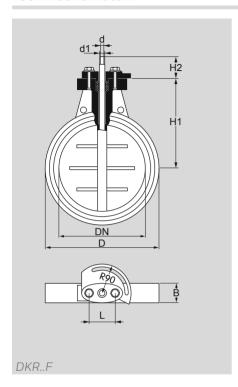

Packung: Alu-Silikat.

8.1 Baumaße


8.1.1 DKR..H in mm

Туре	DN	H1 H2 D B		G	F	Gewicht		
		mm	mm	mm	mm	mm	mm	kg
DKR 15H	15	60	125	44	25	105	100	1,14
DKR 20H	20	60	125	44	25	105	100	1,14
DKR 25H	25	75	140	60	25	105	100	1,14
DKR 32H	32	80	145	67	25	105	100	1,4
DKR 40H	40	83	148	75	25	105	100	1,5
DKR 50H	50	85	150	85	25	105	100	1,6
DKR 65H	65	95	160	105	25	120	100	2,2
DKR 80H	80	105	170	120	30	120	100	2,5
DKR 100H	100	115	180	140	30	120	100	2,8
DKR 125H	125	135	205	170	35	150	115	5,0
DKR 150H	150	150	220	195	40	150	115	6,3
DKR 200H	200	175	245	255	40	150	115	9,3
DKR 250H	250	220	305	310	40	150	115	13,9
DKR 300H	300	240	325	360	45	220	160	22,6
DKR 350H	350	290	410	415	45	220	160	27
DKR 400H	400	335	455	465	50	220	160	39
DKR 450H	450	360	480	520	50	220	160	45
DKR 500H	500	400	520	620	55	220	160	56

8.1.2 DKR..H in inch


Туре	DN	H1 H2 D I		В	G	F	Gewicht	
		inch	inch	inch	inch	inch	inch	lbs
DKR 15H	15	2,4	4,9	1,7	1,0	4,1	3,9	2,5
DKR 20H	20	2,4	4,9	1,7	1,0	4,1	3,9	2,5
DKR 25H	25	3,0	5,5	2,4	1,0	4,1	3,9	2,5
DKR 32H	32	3,1	5,7	2,6	1,0	4,1	3,9	3,1
DKR 40H	40	3,3	5,8	3,0	1,0	4,1	3,9	3,3
DKR 50H	50	3,3	5,9	3,3	1,0	4,1	3,9	3,5
DKR 65H	65	3,7	6,3	4,1	1,0	4,7	3,9	4,9
DKR 80H	80	4,1	6,7	4,7	1,2	4,7	3,9	5,5
DKR 100H	100	4,5	7,1	5,5	1,2	4,7	3,9	6,2
DKR 125H	125	5,3	8,1	6,7	1,4	5,9	4,5	11,0
DKR 150H	150	5,9	8,7	7,7	1,6	5,9	4,5	13,9
DKR 200H	200	6,9	9,6	10,0	1,6	5,9	4,5	20,5
DKR 250H	250	8,7	12,0	12,2	1,6	5,9	4,5	30,9
DKR 300H	300	9,4	12,8	14,2	1,8	8,7	6,3	50,7
DKR 350H	350	11,4	16,1	16,3	1,8	8,7	6,3	59,5
DKR 400H	400	13,2	17,9	18,3	2,0	8,7	6,3	86,0
DKR 450H	450	14,2	18,9	20,5	2,0	8,7	6,3	99,2
DKR 500H	500	15.7	20.5	24.4	2.2	8.7	6.3	123.5

8.1.3 DKR..F in mm

Туре	DN	L	H1	H2	D	В	d	d1	Gewicht
		mm	mm	mm	mm	mm	mm	mm	kg
DKR 15F	15	36	60	75	44	25	8	8	1,14
DKR 20F	20	36	60	75	44	25	8	8	1,14
DKR 25F	25	36	75	75	60	25	8	10	1,14
DKR 32F	32	36	80	75	67	25	8	10	1,4
DKR 40F	40	40	83	75	75	25	8	10	1,5
DKR 50F	50	40	85	75	85	25	8	10	1,6
DKR 65F	65	40	95	75	105	25	12	12	2,2
DKR 80F	80	40	105	75	120	30	12	12	2,5
DKR 100F	100	40	115	75	140	30	12	12	2,8
DKR 125F	125	40	135	75	170	35	12	12	5,0
DKR 150F	150	60	150	75	195	40	12	12	6,3
DKR 200F	200	60	175	75	255	40	12	15	9,3
DKR 250F	250	60	220	75	310	40	12	15	14
DKR 300F	300	60	240	75	360	45	12	20	23
DKR 350F	350	90	290	75	415	45	12	25	27
DKR 400F	400	90	335	75	465	50	12	30	39
DKR 450F	450	90	360	75	520	50	12	30	45
DKR 500F	500	90	400	75	620	55	12	30	56

Technische Daten

8.1.4 DKR..F in inch

Туре	DN	L	H1	H2	D	В	d	d1	Gewicht
		inch	lbs						
DKR 15F	15	1,4	2,4	3	1,7	1	0,3	0,3	2,5
DKR 20F	20	1,4	2,4	3	1,7	1	0,3	0,3	2,5
DKR 25F	25	1,4	3,0	3	2,4	1	0,3	0,4	2,5
DKR 32F	32	1,4	3,1	3	2,6	1	0,3	0,4	3,1
DKR 40F	40	1,6	3,3	3	3	1	0,3	0,4	3,3
DKR 50F	50	1,6	3,3	3	3,3	1	0,3	0,4	3,5
DKR 65F	65	1,6	3,7	3	4,1	1	0,5	0,5	4,9
DKR 80F	80	1,6	4,1	3	4,7	1,2	0,5	0,5	5,5
DKR 100F	100	1,6	4,5	3	5,5	1,2	0,5	0,5	6,2
DKR 125F	125	1,6	5,3	3	6,7	1,4	0,5	0,5	11,0
DKR 150F	150	2,4	5,9	3	7,7	1,6	0,5	0,5	13,9
DKR 200F	200	2,4	6,9	3	10,0	1,6	0,5	0,6	20,5
DKR 250F	250	2,4	8,7	3	12,2	1,6	0,5	0,6	30,9
DKR 300F	300	2,4	9,4	3	14,2	1,8	0,5	0,8	50,7
DKR 350F	350	3,5	11,4	3	16,3	1,8	0,5	1,0	59,5
DKR 400F	400	3,5	13,2	3	18,3	2	0,5	1,2	86,0
DKR 450F	450	3,5	14,2	3	20,2	2	0,5	1,2	99,2
DKR 500F	500	3,5	15,7	3	24,4	2,2	0,5	1,2	123,5

9 Einheiten umrechnen

Siehe www.adlatus.org

10 Wartungszyklen

Die Drosselklappe DKR ist wartungsarm.

Wir empfehlen 1 x pro Jahr einen Funktionstest.

11 Glossar

Regelcharakteristik, Ventilautorität

Damit die Drosselklappe den Volumenstrom beeinflussen kann, muss ein Teil vom Druckverlust Δp der gesamten Anlage an der Drosselklappe abfallen. Da der gesamte Druckverlust Δp minimal gehalten werden soll, wird eine Ventilautorität a = 0,3 für die Drosselklappe empfohlen. Das bedeutet, vom gesamten Druckverlust Δp entfallen 30 % auf die voll geöffnete Drosselklappe.

Warmluftkompensation

Unter Wärmezufuhr erhöht sich das Volumen der Luft. Der Sauerstoffgehalt der Luft reduziert sich pro m³. Um den Sauerstoffanteil konstant zu halten, muss dem Brenngas mehr Luft zugeführt werden.

Rückmeldung

Zum Schluss bieten wir Ihnen die Möglichkeit, diese "Technische Information (TI)" zu beurteilen und uns Ihre Meinung mitzuteilen, damit wir unsere Dokumente weiter verbessern und an Ihre Bedürfnisse anpassen.

Übersichtlichkeit

Information schnell gefunden

Lange gesucht

Information nicht gefunden

Was fehlt?

Keine Aussage

Verwendung

Produkt kennenlernen

Produktauswahl Projektierung

Informationen nachschlagen

Bemerkung

Verständlichkeit

Verständlich Zu kompliziert

Navigation

Keine Aussage

Ich finde mich zurecht

Keine Aussage

Ich habe mich verlaufen"

Umfana

Zu wenia

Ausreichend

Zu umfangreich Keine Aussage

Mein Tätigkeitsbereich

Technischer Bereich

Kaufmännischer Bereich

Keine Aussage

Kontakt

Elster GmbH Postfach 2809 · 49018 Osnabrück Strotheweg 1 · 49504 Lotte (Büren) Deutschland

Tel +49 541 1214-0 Fax +49 541 1214-370 info@kromschroeder.com

www.kromschroeder.de

Die aktuellen Adressen unserer internationalen Vertretungen finden Sie im Internet: www.kromschroeder.de/Weltweit.20.0.html

Technische Änderungen, die dem Fortschritt dienen vorbehalten Copyright © 2016 Elster GmbH Alle Rechte vorbehalten.

